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The problem of elastic-fluid scattering is studied by combined
integral equations for the exterior acoustic fluid and finite element
methods for the elastic structure. These yield reduced problems
aven {inile domains, The well-known dilficolly with exterion integinl
cquation methods at critical frequencies carries over to the reduced
problem. A procedure is given to overcome this difficulty and a
complete analysis of this procedure is provided, showing existence,
unigueness, and optimal convergence for the coupled problems.
This methed is termed stable. Numerical experiments confirm that
the new approach is valid for all frequencies and indicate that varia-
tional methods are preferable to collocation in the treatment of
integral equations, even for purely exterior problems. Our method is
fully variational and may be expressed in a symmetric form. 1985
Academie Press, !nc.

L. INTRODUCTION

In this paper we are concerned with the problem of scatlering
by an elastic obstacle in an acoustic fluid. This is intended as
a model for a class of scattering problems and their solution
by what are known as coupling methods. We discuss both
questions of existence, unigueness, and convergence, as well
as issues of accuracy of the numerical approximations. Let us
state the mathematical problem. Physical details appear in |1,
7{. We describe the threezdimensional problem but our compu-
tations will be done in two dimensions.

Let ) be a bounded region in R with boundary | and
exterionr £3'. Tt er[U] denole the siress (ensor for o lincarly
elastic, inltomogencous material lor dispiacement U, p is a
posilive function in ¢ and o, Co. and @ are positive constants,
P s a solution of Ap® + (w¥ci)p” = 0 in RY Then we seek
U(x) in {} and p(x) in 2 such that

divolUl + po’U=0 in{)
2
L.p=Ap + (—051) =0 inQt
Ca
olUjmy=—(p"+p" onl’ (P)
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U -n=

(pr+py onl
p satisfics a radiation condition in £2*,

n is the exterior normal to I, p, is the normal derivative
of p, and the plus and minus signs indicate limits from 3"
and (). {} represents an inhomogeneous elastic obstacle and
01" is a compressible, non-viscous, homogeneous fluid. U is
displacement and P = p + p" is fluid pressure with p" an
incident field. All fields are assumed small and time periodic
with frequency @. Analogous problems oceur in elastic—elastic
and electromagnetic scatiering. See, for instance, [2, 5, 10,
11, 13].

Remark 1.1. It is known that, for very special geometry {2,
uniqueness for (P} can fail. We assumec here that (P) has at
most one sofittion.

Coupling methods' for (P) (and analogous problems) proceed
as follows. One uses known integral equation methods for
exterior problems for L,p = 0 to obtain a reduced problem (P)
over {} only but with auxiliary boundary functions and non-
focal boundary conditions. One then utilizes standard interior
procedutes 1 obtain a variational problem (VP) and implements
this with finite elements to obtain approximate problems (AV/P)
which are solved numerically. Suppose that, for all frequencies
o, (" and (£) arc equivalent, (7) has a unique solution, and
one has optimal convergence for (AVP). Then we say that the
coupling method is stable.

In Section Il we will present three distinct coupling methods.
These are derived from three different representations of solu-
tions of L,p = 0 in £}*. The first two are ones given in [1, 8]
and each fails for (different) sets of frequencies. This reflects
the fact that the first (second) representations will not succeed
as an ansatz 1o solve the exterior Dirichlet (Neumann) problem
for L,p = 0. There have been a number of methods proposed
to correct their difficulties; see, for instance, [3, 4, 14, 15]. The

'Other types of coupling which de not use integral equations have also
been used.
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COUPLING METHOD FOR INTERFACE SCATTERING

third coupling method is a stable one. In it we use the
exterior representations used in [3]. It is shown in [3] that
this new representation will yield a solution of either the
Dirichlet or Neumann exterior problem. We show here that
it also works for the interface problem. Thus, we may
consider our method to give exact results up to the limits
of numerical accuracy.

A complete theory is carried out for our stable method. In
Section Il we derive the variational problem (Vﬁ) and its
approximation (AVP). For those interested in technical detail,
Section IV contains proofs of existence and optimal conver-
gence. Section VI contains some numerical examples.

Our stable method has essentially the same computational
complexity as non-stable variational ones and is comparable
to widely used non-stable collocation techniques. For this
reason we have included some computations with the non-
stable ones, using both collocation and Galerkin techniques;
results of these computations suggest two conclusions
which seem important and are included in the following
remarks.

Remark 1.2, If a non-stable representation is used to solve
a pure exterior problem it appears to be preferable to use varia-
tional methods on the integral equations rather than collocation.
With variational methods errors are highly localized, in contrast
to collocation methods. This is dramatically illustrated in Fig.
2. The coupling methods of [1, 8] automatically give varia-
tional treatments.

Remark 1.3, Our calculations indicate that non-stable varia-
tional methods yield results for the exterior problem which are
quite accurate unless o is essentially equal to a breakdown
frequency. The same comment usually holds for the interface
problem, although some differences were observed for values
of @ near some of the actual natural frequencies which occur
in the interface problem.

Remark 1.4. Our method, in principle, will apply to any
linear, time-periodic scattering problem in which there are rep-
resentations of the exterior field in terms of simple and double
layer potentials, including electromagnetic, and elastic—
elastic problems.

Remark 1.5. One feature of the various coupling methods
is the absence or presence of hypersinguolar integral operators.
The examples in Section I illustrate this. We conjecture that
stable methods will always contain such operators, although,
of course, this is not sufficient. We comment more on this in
Section II.

Remark 1.6. A desirable feature for computations on cou-
pling metheds is symmetry in (VP). In Section V we give
a symmetric version of our stable procedure. It contains an
additional auxiliary function, but this, however, represents litile
additional computational effort.
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II. THE REDUCED PROBLEMS
The basis for exterior methods is some well-known potential

theory. We start with the fundamental singularity for L,v = 0
with a radiation condition,’

K(2) = —ﬁexp (i%z) in R? @.1)

and we form the simple and double layers,
110 = || K (x — ¥ a, @2
DB = [, 60 5 Klx = 3has,.  220)

These satisfy L,v = 0 in {1 and {}*, with a radiation condition.
For smooth ¢ and I' one has the jump relations

Fig)* = Sl¢] (2.33)
Bll* = F3d + D[] (2.3b)
2 G141 = =4 + N[ 2.3¢)
a *
- a[¢)* = Mid) 2.3d)
in which
Jd
DLI) = [, 60) ;= Kk~ yDlerdS,  @230)
NigIo) = [ ¢S Klix = yDlerdS, 23
'-_)2
MBI = [ 69 =5 K = yler S, 2.30)

The integral operators D and N have kernels which are of order
|* ~ y|"! near x = y, while M has a kernel of order |x — y| ™

Later we will need to consider the integral operators in (2.3)
on boundary Sobolev spaces. It is known (see, for instance,
[6]) that the following can be defined as boundary linear maps:

Sa Nﬂ D'Hr(r) —> Hr+l(r)!

(2.4)
M: Hr+l(r) i Hr(r)s

1
r= —s5.

The last result is what is meant by M being hypersingular. We
note that N and D are adjoints while § and M are self-adjoint
(with respect to the bilinear form (¢, ¥ = [, du ds).

For a solution of L,y = 0 in { or in * with a radiation
condition one has the representation formuias

*In R? K(z) is replaced by the singular Hankel function i/4H}{wz/cy).
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in )
in 7.

v =] - Y]
v =Y D]

{2.5a)
(2.5h)

We want to discuss in some detail three different coupling
methods. All start with some representation of p in Q*, The
first is a special case of the method in {1]. It is termed indirect
since it uses an auxiliary function in the exterior representation.
The second comes from [8] and is called direct since it uses
(2.5b). Each has its advantages and disadvantages but both lack
stability. The third method, which is the main topic of this
paper, is also indirect but it is stable.

Merthop 1. p = F[¢) in O*. (2.3) yields p* = S[d],
P =4 + N[¢d]. We substitute these into the boundary condi-
tions and obtain the reduced problem:

div o{U] + po’U =10 in}
oUln)=—~(S[¢] +p°n onT (P
ppetU” n=3H+ N[l +p° onT.

We solve this for (U, ¢) and determine p in Q7 from p = F[H).

Meton 2. p = F[pf] — D[p*]in 1%, (2.3) gives ip* =
Slpfy — Dip*l. spf = N[p:1 — M[p*]. This time we use
¢ = p* as an auxiliary variable and write

1 i
o[U)(n) = —(p* + p'm = ~ (5 b+ Ep*" + p") n
~- (% &+ Sip] - DIg) +p“) n

- (% &+ mo™STU” 0] = S[pA — Dig] + p°) n

(1
U =g

sy — L (gt - 1
(Pi +PD = (N[pn] MI] + 2pn)

1 1
= N[U -n]— —= | M[¢] + = p% — N[ D
(U= n] Mz( [6]+5pi— Mp 1)
on[,
The reduced problem is, then,
divalUl + po’U=0 inf)

o[U-Im) = - (% ¢+ pow’S[U”-m] — Di]

~S[pi + po) n onl (P
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1
pow’

JUn=NUn) (M[q&] spt N[pfi])

onl

for (U, ¢). p is then determined in " by

p = pow®f[U™-n] — D[] — FIp]. (2.7)

MEetHoD 3. Following [3] we represent p as:
p=%dl + aB¢), Ima#0 inQ". M
Here p* = S[¢] — (a/2)p + aD[4], p/ = 3¢ + Nld) +

aM[¢], and the reduced problem is

div ofU] + po®U =0 i)

afU'l(n) = — (S[‘;b] - % b+ aD[P] + po) n onl
posz'-n:%¢+N[qb]+aM[d)]+p2 onI’ (P)

for (U, ¢) with p determined by ().

(P;) contains the hypersingular operator M while (P,) does
not. On the other hand, the variational form (VP,) is symmetric
while (VP,) is not. (A symmetric version of (£,), without M,
is given in [1].) As we show shortly all these methods are non-
stable while Method 3 is stable.

One verifies easily that if (U, ¢) is a solution of (P)), (£,),
or (P) and p is appropriately defined in (3%, (U, p) will be a
solution of (P). The difficulty lies with the reduced problems.
The arguments in the next sections can be applied to all three
methods to show that one has existence for the reduced prob-
lems if and only if one has uniqueness, and uniqueness holds
for all w only for (P). Let us make this precise. We have the
following result.

Lemma 2.1, (i) P[Pl = 0in QF (D[Pl = 0 in OF) if and
only if ¢ = —uv,, where L,y = 0inQ,v- =0{(¢d = —v",
where Ly = 0in 2, vy = 0). (i) If Im o # 0 P[P} + D[]
=0inr=¢d=0.

We prove this resuli at the end of the section but first let us
see the consequences, Suppose (U, ¢) is a solution of one of
the reduced problems for p® = p? = 0. Then if we determine
p by the appropriate formula, (U, p) will be a solution of (P}
for p% p¥; hence by Remark 1.1 U =0 in Q and p = 0 in Q*,
For Method 1 we conclude that ¥[¢] = 0 in {}*. By Lemma
2.1. (i) we can conclude ¢ = 0 and uniqueness for (P)), if and
only if w¥ct & AP, where {AL} are the eigen-values for
L,v = (0 in £} with Dirichlet conditions, For Method 2 we have,
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by (2.7}, B[$H] = 0 in " and we will have uniqueness only
if w?/c? # —AY, where {A}} are the eigen-values for Neumann
conditions. For Method 3 we will have ¥[¢] + a%i[¢] = 0 in
€)*; hence ¢ = 0. Thus we have the following.

Treorem 2.1, If Im o 7 (0 (P) has at most one solution.

In the next two sections we confine our attention to (£). We
remark that the results obtained will be true for Methods 1 and
2 and the others in [1] as long as @ is not equal to a member
of the appropriate bad sequence.

Proof of Lemma 2.1.  Suppose F[¢] = 0 in *. Put v =
F[¢]. Then v is defined and continuous in all space, and
L,y = 0in Q U O Further, we have v+ = v = 0. Thus v
is a solution of the problem L,v = 0 in 2, v~ = 0. From (2.3¢)
we have then that ¢ = vy — v; = v;. Conversely suppose
L,y = 0in O with v™ = 0. Then, by (2.5 v = —F[v;]. Now
consider v = J[v;] in {}*. It is a solution of L,y = 0 and
vanishes on I'; hence it is identically zero by unigueness for
the exterior problem. Thus v~ = 0 and ¢ = —uv, satisfies
S[¢] = 0. A similar argument proves the result for . Suppose
now that F[¢] + oB[p] = 0 in " and put w = F[p] +
%[ ], Then

vt = S[d] —§¢+ aD[¢] =0,
v = S[d] + % &+ aD[d] = ad,

i =2 ¢+ NId] + aMld] = 0,

l

v, = —§¢+N[¢] +aM[d] = —¢.

Then by Green’s theorem,

2
1 _ W _ -
fﬂ(qu 65|v|)dx jrvunds
-/ (ivU|2—93|u|2) di+a | {grds=0
n c} r ’

Hence ¢ = 0. (This is essentially a proof from [3).)

HI. VARIATIONAL PROBLEM

We give a variational formulation for (£). We multiply the
differential equation by a test function V, integrate over (1,
apply Green’s theorem, and use the first boundary condition to
evaluate the boundary integral. Then we multiply the second
boundary condition by a test function ¢ and integrate over I'.
We introduce the following notation;
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AU, V) = j L (0101 VY — p?UV) dx,

B(¢, V) = Jr (S[¢] - %¢+ aD[c;‘;])V'nds (3.12)

CU,y) = —[ U--ngds,

D)~ [ (Lo N6 - g B v
Dot
F(V--m) = —prOV- ‘nds,
1
po’

G = - — [ s (3.10)

We will seek generalized solutions of (£) in which (U, ¢) €
H = (H{EHY X H ;T and we will require that the traces,

Poe Pr? € H,(I). (3.2)

Then by (2.4), we see that all terms in (3.1) will be meaningful
for (V, ) € ¥, provided we interpret fr M[ Pl ds as the
duality pairing {M[¢], v between H,,(I'} and H_ (). Our
variational problem then is to find (U, ¢) € % such that

A(U, V) + B(, V) = F(V),

CU ¢+ Db, ) =84) VYV, EH. (VP

Remark 3.1. Note the difference in the regularity. In
Method 1 ¢ € H_, (") and the corresponding variational prob-
lem is on H (£2)* X H_;(T). In Method 3 ¢ € H,,(I") and the
variational problem is on H ((2)* X H,(I').

Our first result to be proved in the next section is this theorem.
THEOREM 3.1.  (VP) has a unique solution for any w and
any p°, p;.

Although we will not carry out the proof, the following
regularity result can be obtained. (See Remark 4.1 for the idea
of this argument.)

Tueorem 3.2, If p° p? € Hyp (D) one has U € H,., ()
and ¢ = H”2+;‘(F).

For k£ = 2 it will follow that (U, ¢) is a classical solution
of (P).

One obtains approximate problems by choosing families W#,
S of finite dimensional subspaces of H,({}) and H,(I"), and
seeking (U", ¢") € " = W" X 5* such that

AU V) + B(¢P, Vh) = F(VH),
C(U, ) + DXPP, ™) = G(y),

(AVE)
V(VE ") € F.
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We will assume that the spaces W' and $* have the approxima-
tion property:

Given g > O there is an F, such that for any & < ky and any
(U, ¢} € ¥ there is a (U", ¢") &€ F* such that

00, @) — (U Ml =< e.

Under this assumption we will establish the following optimal
convergence result.

THeOREM 3.3.  Ler (U, @) be the solution of (P). Then there
isan hy > 0 and a y > 0 such that for any h < hy:

(i) (AVP) has a unique solution (U", J*)

i) U, ¢) — (U, ¢l = ylU. &) - (V2 ¢l
V(VE "y € 3,

1t follows that (U%, ¢*) — (U, &) in 3. The rather technical
arguments of the next section amount to showing that (VF) is
a compact perturbation of a coercive problem; hence it is a
Riesz—Schauder system for which uniqueness implies exis-
tence. Thus the failure of uniqueness produces a failure of exis-
tence.

IV. EXISTENCE AND CONVERGENCE

-

A key to the work in this section is that the forms A and D
of (3.1} are nearly coercive. For A this follows from Korn’s
second inequality which states that there are constants &, > 0,
kqa > 0 such that

[, oL YO ax = kU, — BV @)

For D we need to compare M with the operator obtained if we
replace K'in (2.1} by Ky(z) = —(4wz)”" exp(—z), the fundamen-
tal singularity for Av —v =03 Wewrie K=K, + K, D =
Dy + Dy, M = M, + M,. Then there is a cancellation of singular
terms so that one has

M H() — H.(I). (4.2)

For M, we have the following result.

Levma 4.1.
¢ € HpI)

There is a constant m > (} such that for any

(Mo, &) > ml|plls - (4.3)

Proof. A complete proof is given in [6] but we can sketch
the essential idea. Assume ¢ is smooth and put v = D).
Then v~ — v* = ¢ and v = v, = My[¢]. Apply Green’s
theorem to £} and {}* to obtain

¥ In two dimensions K, = —if4 In z.
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0= Jn (Vo2 + loPydx — L v;u dS

= [ (Vo + oy dx + [ viv* as.
Hence,

L (v~ — viut)dS = L M) dS

= [ AVol + by dx + [ (VoP + o) dx.

This shows that M, is injective. Pseudo-differential operator
theory (M, is an operator of order one) can then be invoked to
show that M, is also surjective and (4.3} follows from the open
mapping theorem.

We make the following decomposition for problem (V/P),
We set

A=A+ A, D=D,+ D (4.4)
with
AU, V) = [ (@1UL: VY + kU - V) dx
= {A(), V) (4.5a)
(M), ) = (M( ), ). (4.5b)

Here A, and M, are bounded, invertible, linear maps from H,(Q})*
and H,,([) to their duals, (H,({})*)’ and H (T = H_u(T).
First we consider the variational problem,

AO(Us V) = @(V),

My, ) = E(y) (4.6)

(thatis, Ay(U) = F and My¢ = ) for bounded linear function-

als & and % on H,(Q)® and H,,,(I'). The invertibility of 4, and
M, yields the following result.

Lemma 4.2, There exists a unique solution of (4.6),
(U, ) = (A \(F), M; \(£)), @7

where A;' and My' are bounded linear maps.

Next we write, by (3.1), (4.4}, and (4.5),
AUV = [ o+ poIU-Vdx =AM, V) (@8

Bo.V)= [ (S[qb] ~So+ aD[qu) V- nds

= (B(¢), V) (4.8b)
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CU. ) = [ U npds = (E), ) (4.80)

D= (Lo 1 01+ cotian) B

= (D\($), ¢ (4.8d)

Lemma 4.3. A, B, C, and D, are compact.

Proof. A, is the composition of the injection of H,(£)’ into
L), which is compact and the embedding of L£,())® into
(H,{£2)"Y which is continuous. B is the composition of the map
¢into (o] — s + aD|(¢] from H (') into itself, the natural
embedding of H(I') into H_;(T"), which is compact, and
the transpose of the operator taking H,({1)* into the normal
component of the trace. C composes the normal component of
the trace operator with the injection of H(I') into H_,,(I").
Finally D, composes a map from H (') to itself with the
injection of H,,(I'} into H_x(T).

Progf of Theorem 3.2. On the basis of the calculations
above we see that (VP) is equivalent to the equations
U=(A;'A, + A;'BYU + A;'%

on (H,((2))") (4.9a)

¢ = (Malé + Malﬁl)(,b + MEKQ on Hm(r), (4.9b)

where the operators on the right are compact. Hence, to establish
existence it suffices to show that the only solution for # =
0,%=0isU =20, ¢ = 0. Butif (U, &) is such a solution U
and p = P[¢] + aB[P] will yield a solution of P for p° =
pt=(; hence U = 0 and ¢ = 0.

Remagrk 4.1.  To make this argument completely rigorous
one needs to show that a solution of the homogeneous equation
(4.9) has sofficient regularity so that the uniqueness theorem,
Theorem 2.1 applies. Let us sketch just a little of this argument.
If (U, ¢) is a solution of the homogeneous equation (4.9) then
we see that U is a generalized solution of div ¢[U] — KU =
—({ky + pa?)U) = y with the traction condition o(U)[n} =
~(8[] — (@/2)¢ + aD[d] + p)n = un. We have y € L{(})
and p € H,,(I") and standard elliptic theory then gives U €
H{(2. Then U™ -1t € Hy(I) and the equation y¢ + N{d) +
aM[¢] = moU-n will give ¢ € Hyn(I'). One can now
continue by a boot-strapping argument to show that U and ¢
have an arbitrary degree of smoothness if I" is smooth.

Proof of Theorem 3.3. This result follows from the same
two facts, coercivity and compactness, as Theorem 3.2. This
is a known technique; see, for instance, [l or 9]. We skeich
the essential idea. One first defines a Galerkin operator G{:
% — % by the formula Gi(U, ¢) = (U”, ¢, where

ALON Vi = AQU, VY VYV e W (4.10a)
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M, ") = My(p, ") VY € §*, (4.10b)

Lemma 4.2 shows that G exists and one can show that
IG5, ¢) — U, lix = KU, ¢

We write H(U, ¢) for the map from 3 into #' defined by
(4.5). Then we define an operator % # — ¥ by the formula

Fh =TI - G,

where J is the mapping from # — ¥ defined by the compact
operators in Lemma 4.3. The compactness of H can then be
shown to imply that |%*| — 0 as & — 0, provided the spaces
#* approximate . Finally one can then define a Galerkin
operator G* = Gi(I — %)™ for the perturbed system (VP).

V. SYMMETRIC FORMULATION

Before discussing the numerical experiments, in this section
we give a symmetric version of our procedure, which is the
one that was used in the actual numerical implementation. We
recall that our stable procedure is indirect since it is based on
the representation (1) for p in £2* in terms of a combination of
simple and double layers with density ¢. Here we use the
method proposed in [4], to generate a direct stable formulation.
A combination with our previous method then yields the desired
symmetric form.

MeTHoD 4. This starts with the same direct representation
formula (2.5) for p in (0t as method 2, p = Fpf] ~ W[p*]
in €%, from which we obtain

Ept — S[pil + DIp*h + atp, — Nipil + Mip*DH =0
(D)

with Im @ # 0, and we introduce A = a[U7](n)-n, as a new
auxiliary variable. After inserting the transition conditions from
(P) into (D) this yields the reduced problem

divelU] +po’U=0 in{}
ofU)n)=An onl

2o S|U™ 1] + 34 + DIA] + a{—2pe®U~ -0

(Pp)
+ p@*N[U™ - n] + M[A])
= S[phl —~ D(p°1 + aN(pal — aM([p°]
=—(p"+apl) onl
for (U, A). p is then determined in {}* by
Cp = p* U - 0] — B[—A - pl. (5.1)
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Remark 5.1. We have simpliified the right side of the last
equation in (£,) by using the representation formula (2.5a) for
poin (1. ‘

A symmetric formulation is now obtained by combining
(Py and (Pp) as follows.

MetHOD 5. Here the problem is to solve for (U, A, ¢)
such that
div ofU) + po’U = 0 in0)
(U |(n) =%(A — STé1 +%¢*Q‘D{¢} —p")n onT

L=, I (1 ~

—EU n+2p0w2<2¢+N[qb]+aM[d>]+p,°,) 0 onT
T i (Ps)
ES[U -n] + 2p0w2 (:2—)\ + D[A] + aM[)l])

o | _
+—2—( -2—U n + N[U n])

1
= pni? (—=p"—apl) onl.

p is then determined in 02* by either (I} or (5.1).

The same resulis obtained for Method 3 hold for Methods
4 and 5. They will be true also for the limiting case correspond-
ing to vanishing & in (Pp) and (P;) as long as w?/ch # —AD.

Next we give a variational formulation for (£). This will
serve as a basis for the numerical results for the deformable
scatterer to be presented subsequently. We multiply the differ-
ential equation by a test function V, integrate over €2, apply
Green’s theorem, and use the first boundary condition to evalu-
ate the boundary integral. Then we multiiply the second and
third boundary conditions by test functions # and Y, respec-
tively, and integrate over I". Using the notation (3.1) this process
leads to

AU, V) +3C(V,2) — 1B(¢, V) =3F(V™ -n)
1D(h, ¢) = 36()

= 3% () + 1%4(x).

1C(U, ) +
—1B(%, U) + 1D(x, A)

(VFy)

Our variatiohal problem then is to find (U, ¢, Ay € #H* =
(HO X (H:) X (HxI)) such that (VB) holds for
all (V, x, ¥ € ¥. We remark that (VP;) may be written
symbolically as

AU, &, A), (V. x. ) = TV, X, )
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and that the trilinear form o has the symmetry property

AU, d, M), (V, x, 9)) = AUV, X, ¥, (U, ¢, A)).

Inn the finite-dimensional approximation this means that the

matrices will be symmetric if we use real basis elements.
The approximate problem (AVP;) corresponding to (VPs)

consists in seeking (U*, ¢", A") € 3¢t = W X Fh X ¥* such that

AU, ¢, A, (VE, X5, %)) = TV X ) -
(AVFg)
VVh x5 ) & HY.

Let us study the structure of these equations. Suppose that
our basis for ‘W* has the form Bi,.., Bk, ¥1, ..., vk, with

% = 0 on I', and let of, ..., of, be a basis for F* Then
(U*, ¢*, A") has a corresponding decomposition into U}, Ut,
&k, At and (AVE) assumes the form

Abg Afr 0 0 Ul 0
(Ah)" Al HOWT —BMUR| 5}
0 Lo 0 ipr N[ 3%
0 —iBH {DH 0 b 1G4

(5.2)

The elements of the various matrices A*, B", C', and D*, are
expressed in terms of the corresponding bilinear forms in (VF);
e.g.. (D¥); = D(of, ob). Similarly, the forcing functions on the
right side of (5.2) are related to the right sides of (VP), and
are functions of the incoming field p° and its derivative p%, on .

Remark 5.2. An advantage of a symmetric formulation,
such as the one in (5.2), is that the algebraic problem can be
solved efficiently by iterative techniques. The procedure is also
amenable to condensation. For mstance, if one is concerned
primarily with the interior region, one may eliminate A* and
" using the last two equations in (5.2) and substitute into the
second equation. (5.2) then becomes

A Abr Uh 0
[(Azar)T e+ K?T] {U’ﬁ} ) {‘@’6}’ 2
where
fr = ~H(BADY)ICH + BADY)CHT)
and

= K+ (CHIDY) 15— BHDY)FY),

The matrix Kfr is symmetric and full and represents the imped-
ance of the exterior region {)*; it constitutes, in effect, a discret-
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ized nonlocal absorbing boundary. %{ represents the corre-
sponding effective forcing function.

VI, NUMERICAL EXPERIMENTS

In order to assess the stability of our procedure we consider
the two-dimensional scattering problem for a circular cylinder
of radius a to an incident plane wave of amplitude P°, The
simple problem of a rigid scatterer is solved first. This means
the exterior Neumann problem for L,p = @ with p, = —pl.
Subsequently, we treat the interface problem. The axis of the
cylinder is kept fixed in both cases, and piecewise quadratic
isoparametric elements are used in all the calculations. Since
the main objective of the numerical experiments with the rigid
scatterer is to investigate how various methods perform near
singular frequencies, we use a sufficiently large number of
finite elements so that any major discrepancy with the exact
solution will be due to the lack of stability of the method itself.
Thus 32 finite elements were used on I to approximate both the
pressure and the density of the potential layers. The numerical
treatment of the duality pairing |, M [é]tr dT that contains the
hypersingular operator M is becoming standard and uses the
identity

[, amigras = | sionl- (Gmy ds

- jr S[n X V] - (n X Vi) ds

in which k = w/c; is the wave number. All the other operators
in our formulation are standard; thus, they require no further
explanation, except to note that three-point Gauss—Legendre
integration formulas were used after subtracting off singulari-
ties. (In R? these singularities are only logarithmic.)

In Figs. 2a and 2b we used the discretized version of the
variational formulations corresponding to the generalized indi-
rect and direct representations given in Methods 3 and 2 respec-
tively. That is, the results plotted in Fig. 2a for the total pressure
at point A directly on the scatterer (Fig. 1) are obtained from
the solutions for ¢ € §* of
(" + N[¢"1 + aM[¢'], ¥*) = —(p). &") VyrES, (5.4)
with ¢ = {, while those in Fig. Z2b come from the solution
pt € §* of

MIp", "y = (=ipy + NIpL ") Wyt e st (5.5)
Boundary integral equations are usually solved by collocation,
rather than through variational procedures such as those de-
scribed in the preceding two equations. To compare the corre-
sponding results, Fig. 2c shows again the pressure at point A,
but this time it is calculated by solving the integral equation
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A

FIG. 1. Model of inhomogenous elastic circular cylinder immersed in a
compressible inviscid fluid medium.,

F —— a=0
-=-- o=ik
Analytical

10

251 —— Method2

- Analytical
20101

1.5 L

)]
1.0 ¥ L x

Total Pressure, 'P(a)l / P, at Point A

25+ —— Collocation
Analytical

20 ¢

Wave Number, ka

FIG. 2. Normalized amplitude of total pressure at point A on the surface
of circular rigid scatterer: (a) Eq. (5.4); (b} Eq. (5.3); (¢) Eq. (5.6).
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bp* + Dip™1 = —-S[pl) (5.6)
directly by coliocation. Note that the integral operator in (5.4)
with ¢ = (}, (5.5), and (5.6) are non-stable, while those of {5.4)
are stable if Im o # 0.

It is important to emphasize that in contrast with the colloca-
tion method the variational procedures require that certain dou-
ble integrals be evaluated. We found, however, that the total
computational effort for solving (5.5) and (5.6) was comparable,
since fewer Gaussian integration points were required (an aver-
age of four per integral in (5.5) versus eight in (5.6) per
element).

The collocation solution is compared in Fig. 2c against the
corresponding well-known exact solution. As expected, the
approximate solution fails at the critical frequencies corre-
spending to the eigen-values A2," as it should, since the method
is not stable. However, it also performs poorly within a sizable
interval around each critical frequency. As the wave number
increases and the critical frequencies become clustered together,
the solution is untreliable throughout the high frequency range.

The exact solution of the rigid scattering problem is also
shown in Figs. 2a and 2b, together with the numerical solutions.
Again, the solutions of (5.4) with ¢ = 0 and (5.5) fail at the
critical frequencies, corresponding to the eigen-values AY and
AP, respectively. What is surprising is that these non-stable
solutions differ from the exact solution only when w is very
near the critical frequencies. The stable solution corresponding
to (5.4) with @ = i/k1s indistinguishable from the exact solution,
at all frequencies. These results confirm that the generalized
indirect representation is valid for all frequencies, and, most
importantly, they indicate that varigtional methods, even if non-
stable, are preferable to coilocation in the treatment of integral
equations associated with wave propagation problems.

FIG. 3. Typical finite element mesh for numerical solution of scattering
problem for elastic cylinder.

* Critical frequencies are determinated as zeroes of Bessel functions or
their derivatives.
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5

Total Pressure, IP(a)l / P4, at Point A

Density of Layer I¢!, at Point A

Wave Number, ka

FIG. 4. Normalized amplitude of total pressure and amplitude of density
of potential layers, at point 4, for elastic scatterer {p/py = 1.1, cfcy = 0.576,
v = 0.4).

Qur second example concerns the interface problem. We use
(5.2) both with e« = i/k (the stable case) and with o = 0 (the
non-stable case). Qur theory guarantees that the former case
is essentially exact for sufficient mesh refinement. Thus any
differences in the two cases represent errors in the non-stable
method.

The solution of (5.2) provides directly the displacement U,
the traction A = ¢ [U](n) - n,” and the density ¢ for the exterior
pressure representation.

We consider a homogeneous, isotropic, elastic scatterer made
of hard rubber. It has a constant Poison’s ratio (0.4, mass density
and shear wave velocity given in dimensionless form by
plpp = 1.1 and ¢/, = 0.576. The scatterer is submerged in
sea water and is subjected to a plane incident wave of amplitude
P? as before. All the calculations are performed using (5.2)
(once with e« = ik and once with o = ().

A typical mesh is indicated in Fig. 3. The response at point
A on the surface of the scatterer (Fig. 1) 1s shown on Fig. 4.
The amplitude of the total pressure® appears on Fig. 4a, while

3 Note that A also equals the total pressure on the surface.
% BEvaluated from Pla) = A
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] LA R S T T T

5L (a) ka=2.4048 1 (d) ka = 0.4066 ]
4

- oe=ifk
3 ’- —_— =0

5E {(byka=73.8318 1

(e) ka = 0.9207 J

Total Pressure, [P(a)l / Pi

s ) 4
g

(fy ka = 1.4807

0 90 180 270 0 90 180 270 360

Angular Coordinate, 8 (in Degrees)

FIG. 5. Normmalized amplitude of total pressure on the surface of elastic
scatterer (pfoy = 1.1, ofcp = 0.576, » = 0.4) for vartous wave numbers {a, b,
c) correspond to critical frequencies, whereas (d, e, f) correspond to the first
three resonant frequencies of the fluid—structure system.)

the density of the potential layers is shown on Fig. 4b. The
solid lines correspond to e« = {) and the dotted ones to & =
ilk. (We recall that for & = 0, ¢ is the density of a single layer,
whereas for o = i/k it represents the density of a combined
single and double layer. Thus, it is natural that the corresponding
curves are different.)

The response of the deformable scatterer is much more com-
plicated than that of the rigid scatterer, due to the compliance
of the elastic scatterer, In addition to the spurious resonances
exhibited at the critical frequencies by the non-stable procedure,
there are additional peaks for both @ = 0 and & = i/k. These
correspond to actual resonant frequencies of the structure—fluid
system. The resonant values for the two methods essentially
coincide, except at higher frequencies.

In order to examine in greater detail the performance of
stable and non-stable solutions both at critical frequencies and
at actual resonant frequencies, we present in Fig. 5 the distribu-
tion of total pressure on the surface of the scatterer, as a function
of the angular coordinate @ (Fig. 1), for several specific wave-
numbers. Figures 5a,b,c correspond to three critical wavenum-
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bers, whereas Figs. 5d,e.f are for the first three resonant frequen-
cies of the system. As expected, the resuits of the non-stable
solutions exhibit large errors at the critical frequencies; at the
resonant frequencies, however, they are indistinguishable from
the corresponding stable solutions. Note that at resonance the
pressure in the flnid is significantly amplified over the maximum
valoe of 2 that would be observed for a rigid scatterer, due 10
the deformation of the scatterer. Note also the oscillation in the
pressure at resonance, as the structure—{luid system is excited in
its various “‘modes”’ of vibration. Thus, Figs. 5d.e.f correspond
to the first, second, and third modes, which describe, respec-
tively, 1, 2, and 3 cycles around the scatterer. The peak values
of the response are bounded because of the energy radiated
into the fluid.

As a further illustration of the performance of the two meth-
ods, Fig. 6 shows the total pressure within the fluid, analogously
to Fig. 5, but at a radius r = 1.5a. To calculate these results
we made use of (1), The total pressure away from the scatterer
naturally is smaller than that on the scatterer, although the
overall patterns remain the same. It is interesting that the differ-
ence between the non-stable and stable solutions is much

6 — 1 1 T

51 (a) ka = 2.4048 t (d} ka = 0.4066 1

43 E R
e = ik

3t — =0 -'-

A

= s (b} ka=13.8318 | () ka = 0.9207

=

:; 4L |

=

-

3

g

&

I

&
51 (cyka=5.1356 1 {fy ka = 1.4807
4L L i
3L 1 P

4] a4} 120 230 1) a0 180 270 360

Angular Coordinatg, 9 (in Degrees)

FI1G. 6. Normalized amplitude of total pressure within the fluid on a circle
of radivs 1.5a; same scatterer and wave numbers as in Fig. 5.
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smaller away from the scatterer than directly on it. This is
consistent with the well-known fact that far fewer elements are
required on the boundary of a rigid scatierer to obtain a solution
in the far field to within a prescribed error than directly on the
scatterer, for any given method.
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